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Abstract

Purpose – This paper aims to demonstrate an application of a novel approximation technique, for a
function whose partial series is known, to a problem in thermal ignition in a combustible variable
viscosity fluid.

Design/methodology/approach – Analytical solutions are constructed for the governing
non-linear boundary-value problem using regular perturbation technique (RPT) coupled with
computer-extended series solution (CESS) and a special type of Hermite-Padé approximant.

Findings – The steady state thermal ignition criticality conditions and their dependent on both
Frank-Kamenetskii and viscous heating parameters are accurately obtained. The results also revealed
the rapid convergence of the approximation procedure with gradual increase in the number of series
coefficients utilized in the approximants.

Originality/value – The analytical and computational procedures utilized in this paper are
advocated as an effective tool for investigating several other parameter dependent nonlinear
boundary-value problems.
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Paper type Research paper

1. Introduction
In petrochemical industries and petroleum refineries, studies related to thermal
ignition criticality and heat transfer in a reactive variable viscosity fluid are extremely
useful in order to ensure safety of life and properties (Bebernes and Eberly, 1989;
Bowes, 1984). Thermal ignition occurs when a reaction produces heat too rapidly for a
stable balance between heat production and heat loss to be preserved. Hence, it is
important to know the critical values of the basic physical quantities, such as the
ambient temperature, surface characteristics, the chemistry of the reacting material
and the physical geometry at which thermal ignition occurs (Balakrishnan et al., 1996;
Bebernes and Eberly, 1989; Makinde, 2004, 2005a). Therefore, the concept of thermal
criticality or non-existence of steady-state solution of non-linear reaction diffusion
problems for certain parameter values is very important from the application point of
view. This characterizes the thermal stability properties of the material under
consideration and the onset of thermal runaway phenomenon.

The classical formulation of this type of problem was first introduced by Frank
Kamenetskii (1969) as shown in Figure 1. Neglecting the reacting viscous
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incompressible fluid consumption, the equations for the heat balance and momentum
in the original variables together with the boundary conditions can be written as:
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where T is the absolute temperature, �u the fluid axial velocity, G the constant axial
pressure gradient, T0 the wall reference temperature, k the thermal conductivity of the
material, Q the heat of reaction, A the rate constant, E the activation energy, R the
universal gas constant, C0 the initial concentration of the reactant species, a the pipe
characteristic radius, ð�z; �rÞ the distance measured in the axial and radial directions,
respectively. It is assumed that the dynamic viscosity of the reactive viscous fluid
under investigation is temperature dependent, that is:

m ¼ m0eE=RT ; ð4Þ

where m0 is the fluid reference viscosity. The following dimensionless variables are
introduced into equation (1):
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Figure 1.
Geometry of the problem
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and obtain the dimensionless governing equation together with the corresponding
boundary conditions as
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where l,1,b, represent the Frank-Kamenetskii parameter, activation energy parameter
and the viscous heating parameter, respectively. In the following sections, equations (6)
and (7) are solved using both regular perturbation and multivariate series summation
techniques (Guttamann, 1989; Hunter and Baker, 1979; Makinde, 2004, 2005a, b;
Makinde and Osalusi, 2005; Sergeyev and Goodson, 1998; Tourigny and Drazin, 2000).

2. Method of solution
The non-linear nature of the equations (6) and (7) precludes its solution exactly; hence,
we employed a regular perturbation technique (RPT) in order to obtain an approximate
solution of the problem. It is convenient to take a power series expansion in the
Frank-Kamenetskii parameter l, that is u ¼

P1
i¼0uil

i . Substituting the solution series
into equations (6) and (7) and collecting the coefficients of like powers of l, we obtained
and solved the equations of the coefficients of solution series iteratively. The solution
for the temperature and velocity fields are given as:

uðrÞ ¼ 2
lðr 2 2 1Þ

16
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Using computer symbolic algebra package (MAPLE), we obtained the computer
extended series solution (CESS) up to the first 22 terms in equations (8) and (9) as well
as the series for the fluid maximum temperature umax ¼ u(r ¼ 0;l,1,b).

3. Hermite-Padé approximation technique
The main tool of this paper is a simple technique of series summation based on the
generalization of Padé approximants and may be described as follows. Suppose that
the partial sum:

UN21ðlÞ ¼
XN21

i¼0

ail
i ¼ U ðlÞ þ OðlN Þ as l! 0; ð10Þ

is given. We are concerned with the bifurcation study by analytic continuation as well
as the dominant behaviour of the solution by using partial sum in equation (10).
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We expect that the accuracy of the critical parameter (lc) will ensure the accuracy of
the solution. It is well known that the dominant behaviour of a solution of a differential
equation can often be written as Guttamann (1989):

U ðlÞ <
Kðlc 2 lÞa for a – 0; 1; 2; . . .

Kðlc 2 lÞaln lc 2 lj j for a ¼ 0; 1; 2; . . .

(
as l! lc ð11Þ

where K is some constant and lc is the critical point with the exponent a. We shall
make a simple hypothesis in the contest of nonlinear problems by assuming that U(l)
is the local representation of an algebraic function of l. Therefore, we seek an
expression of the form:

Fdðl;UN21Þ ¼ A0N ðlÞ þ Ad
1N ðlÞU

ð1Þ þ Ad
2N ðlÞU

ð2Þ þ Ad
3N ðlÞU

ð3Þ; ð12Þ

such that:

A0N ðlÞ ¼ 1; AiN ðlÞ ¼
Xdþi

j¼1

bijl
j21; ð13Þ

and:

Fdðl;U Þ ¼ OðlNþ1Þ; as l! 0; ð14Þ

where d $ 1, i ¼ 1, 2, 3. Equation (13) normalizes Fd and ensures that the order of
series AiN increases as i and d increase in value. There are 3(2 þ d ) undetermined
coefficients bij in the equation (13) and the requirement in equation (14) reduces the
problem to a system of N linear equations for the unknown coefficients of Fd. The
entries of the underlying matrix depend only on the N given coefficients ai. Henceforth,
we shall take:

N ¼ 3ð2 þ d Þ; ð15Þ

so that the number of equations equals the number of unknowns. Equation (14) is a
new special type of Hermite-Padé approximants. Both the algebraic and differential
forms of approximant in equation (14) are considered. For instance, if we let:

U ð1Þ ¼ U ; U ð2Þ ¼ U 2; U ð3Þ ¼ U 3; ð16Þ

the resulting set of cubic algebraic Hermite-Padé approximants enable us to obtain
other solution branches of the underlying problem in addition to the one represented by
the original series. Similarly, if we let:

U ð1Þ ¼ U ; U ð2Þ ¼ DU ; U ð3Þ ¼ D 2U ; ð17Þ

in equation (14), where D is the differential operator given by D ¼ d/dl. This leads to
a set of second order differential approximants. It is an extension of the integral
approximants idea by Hunter and Baker (1979) and enables us to obtain the dominant
singularity in the flow field, that is, by equating the coefficient A3N(l) in the equation
(14) to zero. Furthermore, it is important to note that the rationale for choosing the
degree of the AiN in equation (13) is based on the simple technique of singularity

HFF
17,2

190



determination in second order linear ordinary differential equation with polynomial
coefficients as well as the possibility of multiple solution branches for the nonlinear
problem (Makinde, 2004). In practice, one usually finds that the dominant singularities
are located at zeroes of the leading polynomial Aðd Þ

3N coefficients of the second order
linear ordinary differential equations. Hence, some of the zeroes of Aðd Þ

3N may provide
approximations of the singularities of the series U and we expect that the accuracy of
the singularities will ensure the accuracy of the approximants.

The critical exponent aN can easily be found by using Newton’s polygon algorithm.
However, it is well known that, in the case of algebraic equations, the only singularities
that are structurally stable are simple turning points. Hence, in practice, one almost
invariably obtains aN ¼ 1/2. If we assume a singularity of algebraic type as in
equation (11), then the exponent may be approximated by:

aN ¼ 1 2
A2N ðlCN Þ

DA3N ðlCN Þ
: ð18Þ

For details on the above procedure, interested readers can see (Guttamann, 1989;
Hunter and Baker, 1979; Makinde, 2004, 2005a, b; Makinde and Osalusi, 2005; Sergeyev
and Goodson, 1998; Tourigny and Drazin, 2000). We apply this procedure on the first
twenty-two terms of the solution series as shown in the following section.

4. Results and discussion
Since, the fluid is incompressible and viscous, the above mathematical analysis is very
suitable for highly combustible reactive liquid. It is important to note that the viscous
heating parameter (b) depends on the liquid viscosity and increasing positive values of
b indicate a gradual decrease in the reactive combustible liquid viscosity. The
analytical and computational procedures highlighted in Section 3 above are utilized
and we obtained the results as shown in Tables I and II.

D N umax lc acN

1 9 1.38654059395057 1.99999999999999 0.49999999999
2 12 1.38629435020816 2.00000000000000 0.50000000000
3 15 1.38629436111989 2.00000000000000 0.50000000000
4 18 1.38629436111989 2.00000000000000 0.50000000000
5 21 1.38629436111989 2.00000000000000 0.50000000000

Table I.
Computations showing

the procedure rapid
convergence for 1 ¼ 0.0,

b ¼ 0.0

b umax lc acN

0 1.386294361119 2.00000000000000 0.5000000
1 1.413378943801 1.62484015038031 0.5000000
2 1.426840289644 1.36327227049883 0.5000000
3 1.433109758511 1.17183579592218 0.5000000

Note: Computations showing thermal ignition criticality and maximum fluid temperature for various
values of parameter (b), 1 ¼ 0.0 Table II.
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Table I shows the rapid convergence of the dominant singularity lc (that is the thermal
criticality conditions) together with its corresponding critical exponent ac and
maximum temperature for combustible variable viscosity fluid with gradual increase
in the number of series coefficients utilized in the approximants. Table II shows the
effect of viscous heating on the magnitude of thermal criticality for a reactive variable
viscosity fluid at very large activation energy (1 ¼ 0). It is noteworthy that a decrease
in the magnitude of thermal criticality occurs due to a decrease in the combustible fluid
viscosity (i.e. b . 0). Hence, viscous heating will enhance thermal ignition and steady
flows of combustible fluid at low viscosity under Arrhenius kinetics will ignite faster
than the one at high viscosity. Figures 2 and 3 show both the temperature and the
velocity profiles. The fluid temperature increases with increasing values of viscous
heating parameter. Similar profile is observed with fluid velocity, that is, a combustible
fluid at low viscosity flows faster than the one at high viscosity. A slice of the
bifurcation diagram for 1 ¼ 0 is shown in Figure 4. In particular, for every b $ 0,

Figure 2.
Temperature profile for
l ¼ 0.5; 1 ¼ 0
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Figure 3.
Velocity profile for
l ¼ 0.5; 1 ¼ 0
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there is a critical value lc (a turning point) such that, for 0 # l , lc there are two
solutions (labeled I and II) and the solution II diverges to infinity as l ! 0.

5. Conclusions
The steady flow of a reactive variable viscosity fluid in a pipe with an isothermal wall
is investigated using perturbation series summation and improvement techniques.
A bifurcation study by analytic continuation of a power series in the bifurcation
parameter for a particular solution branch is performed. The procedure reveals
accurately the steady state thermal ignition criticality conditions as well as their
dependent on both Frank-Kamenetskii and viscous heating parameters. Finally, the
above analytical and computational procedures are advocated as effective tool for
investigating several other parameter dependent nonlinear boundary-value problems.
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